Spectrum Analyzer Software System

SASS – A Low-Cost, Digital Spectrum Analyzer
Part of the PASS family of interactive ELINT tools, Northrop Grumman’s Spectrum Analyzer Software System (SASS) is an advanced software spectrum analyzer display. A low-cost alternative to traditional analog spectrum analysis equipment, SASS collects and converts IF data to digital samples, calculating and displaying the power spectral density (PSD).

An all-digital signal processing system, SASS can run on any commercial workstation or laptop running LINUX or Solaris software.

Capabilities

- **Real-time sample data collection.** Conversion of analog IF input to digital samples
- **Real-time spectral analysis display.** Similar to a commercial, analog spectrum analyzer with all-software PSD calculation. Decimation and PSD averaging keeps up with real-time data rates.
- **Falling Spectral Waterfall Display.** Displays PSD as a function of time, colored by amplitude.
- **Persistance PSD display.** Emulates phosphorus decay of an analog scope display. Signal PSDs persist on display for a noticeable time period.
- **Interactive parameter measurement:**
 - Signal frequency, amplitude and bandwidth
 - Sidelobe power deltas
- **Variable FFT sizes to 65K**
- **Continuous PSD display with step mode option.** Steps through PSDs individually for fine grain measurements.
- **Collection bandwidths to 80 MHz**
- **Works in conjunction with PASS or ITAS.** Provides additional analyst screening displays.

Warranty and License

Northrop Grumman recommends an optional, extended maintenance contract for the software tool. The software is licensed and controlled by the International Traffic in Arms Regulations (ITAR), 22 C.F.R. 120-130. Export of the software is subject to prior approval by the U.S. Department of State.

For more information about Northrop Grumman’s Spectrum Analyzer Software System (SASS) and related products, please contact:

Northrop Grumman

17455 E. Exposition Dr
Aurora, CO 80017
720.744.7134
ms-PASS@ngc.com

Screenshot data is simulated.