

Product Datasheet Revision: April 2015

X=3250 μm Y=1500 μm

Product Features

RF Frequency: 92 to 96 GHz

Linear Gain: 17 dB typ.

Noise Figure: 5 dB typ.

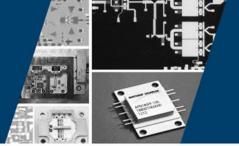
Die Size: 4.9 sq. mm.

DC Power: 2 VDC @ 34 mA

Performance Characteristics (Ta = 25°C)

Specification	Min	Тур	Max	Unit
Frequency	92		96	GHz
Linear Gain		17		dB
Noise Figure		5		dB
Input Return Loss	2			dB
Output Return Loss	7			dB
P1dB		5		dBm
Vd1, Vd2, Vd3		2		V
Vg1, Vg2		-0.4		V
Vg3		-0.2		V
ld1		7		mA
ld2		7		mA
ld3		20		mA

Applications

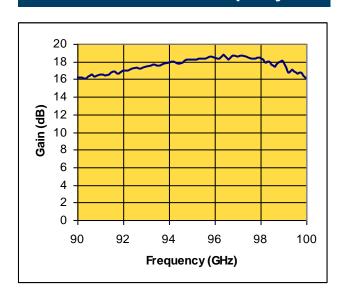

- Short Haul / High Capacity Links
- Sensors
- Radar
- ♦ Millimeter-wave Imaging

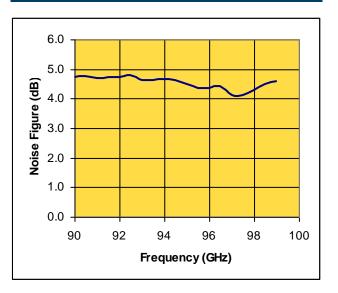
Description and Application

The ALH394 is a broadband, three-stage, low noise monolithic HEMT amplifier designed for use in commercial digital microwave radios and wireless LANs. The small die size allows for extremely compact packaging. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Ti/Au, which is compatible with conventional die attach, thermocompression and thermosonic wire bonding assembly techniques.

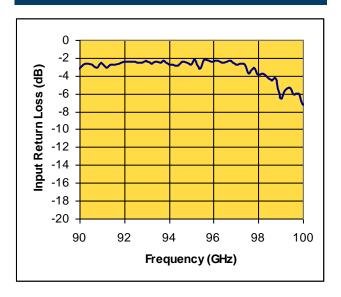
Absolute Maximum Ratings (Ta = 25°C)

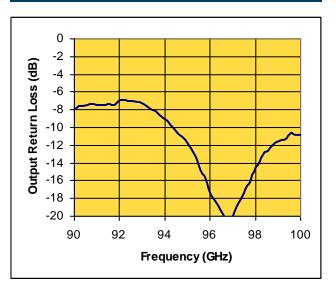
Parameter	Min	Max	Unit
Vd1, Vd2, Vd3		3	V
ld1		10	mA
ld2		10	mA
ld3		25	mA
Vg1, Vg2, Vg3	-0.8	0.2	V
Input drive level		-5	dBm
Assy. Temperature		300	deg. C
(60 seconds)			

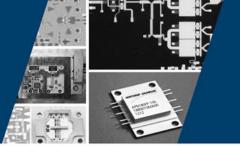



Product Datasheet Revision: April 2015

Measured Performance Characteristics (Typical Performance at 25°C) Vd1 = Vd2 = Vd3 = 2V, Id1 = 7 mA, Id2 = 7 mA, Id3 = 20 mA

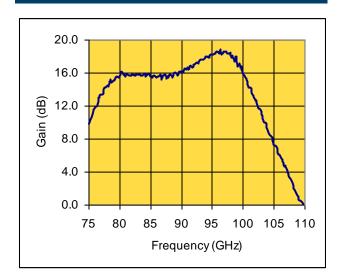

Linear Gain Versus Frequency

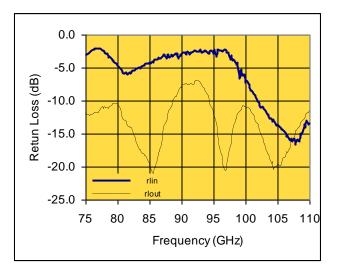

Noise Figure Versus Frequency


Input Return Loss Versus Frequency

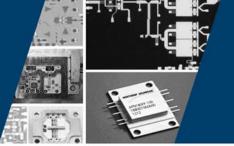
Output Return Loss Versus Frequency

ALH394 92 – 96 GHz Low Noise Amplifier




Product Datasheet Revision: April 2015

Measured Performance Characteristics (Typical Performance at 25°C) Vd1 = Vd2 = Vd3 = 2V, Id1 = 7 mA, Id2 = 7 mA, Id3 = 20 mA

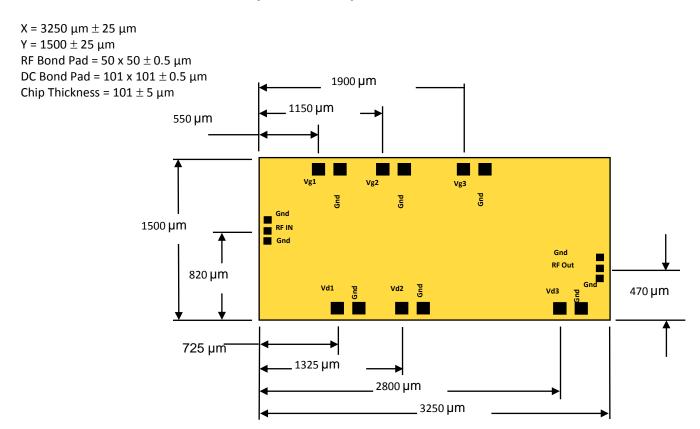

Wide-Band Linear Gain Versus Frequency

Wide-Band Return Loss Versus Frequency

ALH394 92 – 96 GHz Low Noise Amplifier

Product Datasheet Revision: April 2015

Measured Performance Characteristics (Typical Performance at 25°C) Vd1 = Vd2 = Vd3 = 2V, Id1 = 7 mA, Id2 = 7 mA, Id3 = 20 mA


Freq GHz	S11 Mag	S11 Ang	S21 Mag	S21 Ang	S12 Mag	S12 Ang	S22 Mag	S22 Ang
75.0	0.70	99.9	3.04	-17.6	0.00	-118.4	0.26	-165.8
76.0	0.76	91.7	3.81	-42.4	0.00	-132.1	0.25	162.3
77.0	0.78	80.6	4.63	-72.5	0.00	-121.1	0.26	131.0
78.0	0.74	70.4	5.27	-102.7	0.00	141.4	0.28	102.9
79.0	0.65	62.9	5.63	-133.7	0.00	-171.5	0.29	84.1
80.0	0.58	61.7	5.91	-161.8	0.00	134.8	0.30	59.5
81.0	0.51	64.7	5.98	167.5	0.00	6.0	0.23	44.0
82.0	0.51	68.6	6.09	141.8	0.00	9.3	0.20	36.3
83.0	0.55	68.8	6.17	118.2	0.00	-81.1	0.15	30.4
84.0	0.58	67.5	6.25	94.3	0.01	-57.3	0.13	39.6
85.0	0.61	64.1	5.93	70.7	0.01	-151.4	0.10	38.7
86.0	0.65	62.4	5.87	48.8	0.00	-135.8	0.10	76.9
87.0	0.68	56.4	6.00	23.0	0.01	-154.5	0.17	89.4
88.0	0.70	51.4	5.90	3.0	0.01	172.8	0.26	81.9
89.0	0.72	45.1	6.27	-18.3	0.01	178.4	0.34	66.2
90.0	0.69	40.7	6.41	-40.5	0.01	169.1	0.40	50.6
91.0	0.75	32.6	6.72	-63.3	0.02	136.7	0.42	32.9
92.0	0.75	26.2	7.07	-86.0	0.01	114.8	0.44	17.5
93.0	0.76	17.8	7.45	-111.4	0.01	83.1	0.43	-4.5
94.0	0.73	8.7	7.79	-136.7	0.01	69.3	0.35	-28.8
95.0	0.72	0.1	8.07	-162.6	0.01	41.2	0.26	-54.6
96.0	0.75	-12.6	8.33	168.9	0.01	39.4	0.14	-95.3
97.0	0.73	-28.9	8.48	136.1	0.01	25.7	0.10	-179.8
98.0	0.64	-46.6	8.36	104.7	0.01	-6.8	0.18	111.5
99.0	0.47	-60.6	7.89	73.3	0.02	-53.8	0.26	74.2
100.0	0.43	-80.6	6.34	41.2	0.01	-88.6	0.29	46.0
101.0	0.38	-92.4	5.14	11.0	0.01	-96.4	0.26	26.0
102.0	0.31	-102.7	4.30	-15.7	0.01	-149.7	0.20	13.9
103.0	0.27	-111.8	3.58	-39.9	0.01	-179.2	0.15	12.1
104.0	0.23	-123.6	2.86	-61.8	0.01	132.9	0.11	20.7
105.0	0.21	-127.7	2.33	-83.5	0.00	-163.4	0.11	46.1

Product Datasheet Revision: April 2015

Die Size and Bond Pad Locations (Not to Scale)


Recommended Assembly Notes

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of < 6 mil (long) by 1.5 by 0.5 mil ribbons on input and output.

Recommended Assembly Notes

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of < 6 mil (long) by 1.5 by 0.5 mil ribbons on input and output.

ALH394 92 – 96 GHz Low Noise Amplifier

Product Datasheet Revision: April 2015 **Suggested Bonding Arrangement** = 0.1uF, 15V (Shunt) Vg2 = 10 Ohms, 30V (Series) = 100 pF, 15V (Shunt) Vg1 RF RF Input Output Gnd Gnd Gnd Substrate **RF Out** Vd3 Substrate

Recommended Assembly Notes

Vd1

1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.

Vd2

2. Best performance obtained from use of < 6 mil (long) by 1.5 by 0.5 mil ribbons on input and output.