

X = 3.8mm Y = 3.8mm

Product Features

■ RF frequency: 24 to 28 GHz

Linear Gain: 20 dB typ.

■ Psat: 40.5 dBm typ.

■ Die Size: 14.44 sq. mm.

0.2um GaN HEMT Process

4 mil SiC substrate

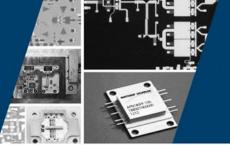
■ DC Power: 28 VDC @ 1.0 A

Applications

- Point-to-Point Digital Radios
- Point-to-Multipoint Digital Radios
- Space-Earth Communications
- Space Research & Earth Exploration

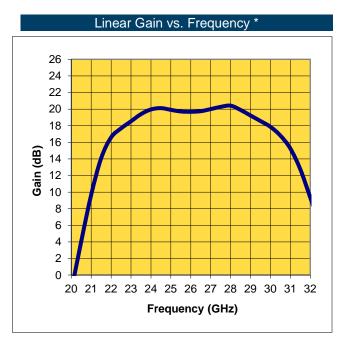
Product Description

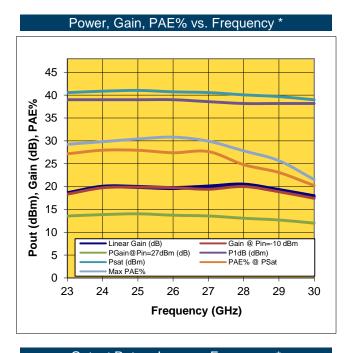
The APN243 monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in Ka-Band communication applications such as point-to-point and point-to-multipoint digital (LMDS) radios and SatCom Terminals. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods.

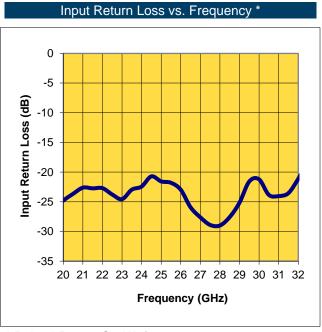

Performance Characteristics (Ta = 25°C)

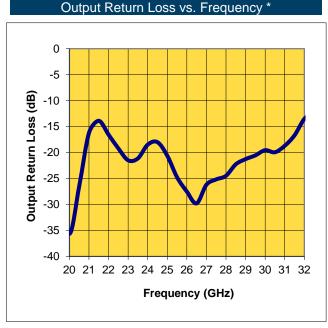
Specification *	Min	Тур	Max	Unit
Frequency	24		28	GHz
Linear Gain	18	20		dB
Input Return Loss	18	20		dB
Output Return Loss	15	20		dB
P1db (PP*)		38		dBm
Psat (PP*)	39.5	40.5		dBm
PAE @ Psat (PP*)		27		%
Max PAE (PP*)		29.5		%
Vd1=Vg1a, Vd2=Vd2a		28		V
Vg1. Vg1a		-3.5		V
Vg2, Vg2a		-3.5		V
ld1+ld1a		200		mA
ld2+ld2a		800		mA

^{*} Pulsed-Power On-Wafer unless otherwise noted

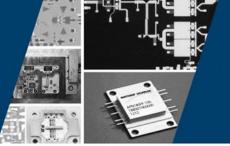

Absolute Maximum Ratings (Ta = 25°C)

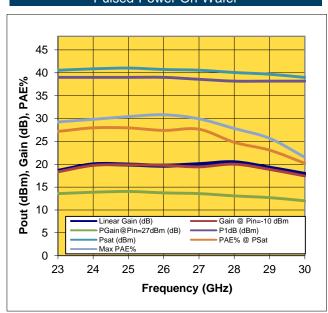

Parameter	Min	Max	Unit
Vd1=Vg1a ,Vd2=Vd2a	20	28	V
ld1+ld1a		240	mA
ld2+ld2a		960	mA
Vg1, Vg1a, Vg2, Vg2a	-5	0	V
Input drive level		TBD	dBm
Assy. Temperature		300	deg. C
(TBD seconds)			

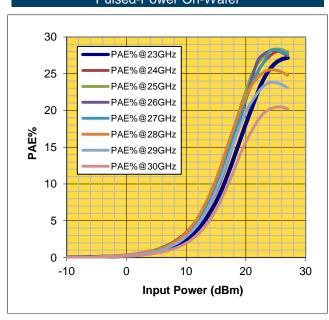




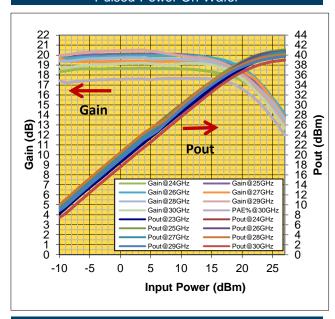
Measured Performance Characteristics (Typical Performance at 25°C) Vd = 28.0 V, Id1 + Id1a = 200 mA, Id2 + Id2a = 800 mA

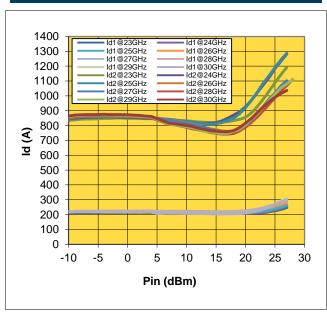



^{*} Pulsed-Power On-Wafer



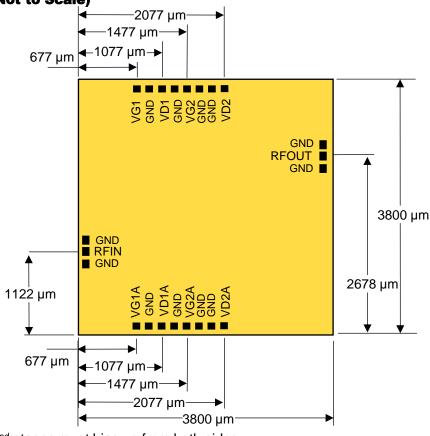
Measured Performance Characteristics (Typical Performance at 25°C) Vd = 28.0 V, Id1 + Id1a = 200 mA, Id2 + Id2a = 800 mA


Power, Gain, PAE% vs. Frequency Pulsed-Power On-Wafer

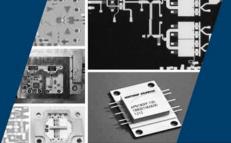

PAE% vs. Input Power Pulsed-Power On-Wafer

Output Power, Gain vs. Input Power Pulsed-Power On-Wafer

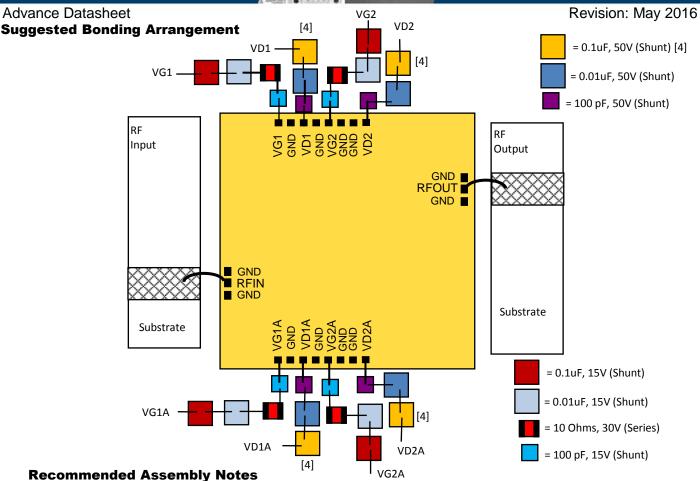
Stage Currents vs. Input Power Pulsed-Power On-Wafer



X=3800 μm \pm 25 μm Y=3800 \pm 25 μm DC Bond Pad = 100 x 100 \pm 0.5 μm RF Bond Pad = 100 x 100 \pm 0.5 μm Chip Thickness = 101 \pm 5 μm



Biasing/De-Biasing Details:


Bias for 1st stage is from top. The 2nd stages must bias up from both sides.

Listed below are some guidelines for GaN device testing and wire bonding:

- a. Limit positive gate bias (G-S or G-D) to < 1V
- b. Know your devices' breakdown voltages
- c. Use a power supply with both voltage and current limit.
- d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture.
 - i. Apply negative gate voltage (-5 V) to ensure that all devices are off
 - ii. Ramp up drain bias to ~10 V
 - iii. Gradually increase gate bias voltage while monitoring drain current until 20% of the operating current is achieved
 - iv. Ramp up drain to operating bias
 - v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved
 - . To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable):
 - i. Gradually decrease drain bias to 0 V.
 - ii. Gradually decrease gate bias to 0 V.
 - iii. Turn off supply voltages
- f. Repeat de-bias procedure for each amplifier stage

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of <10 mil (long) by 3 by 0.5 mil ribbons on input and output.
- 3. Part must be biased from both sides as indicated.
- 4. The 0.1uF, 50V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do **NOT** use the 0.1uF, 50V Capacitors.

Mounting Processes

Most NGAS GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 320°C for 30 seconds.

Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool.

CAUTION: THE IMPROPER USE OF AUSN ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS.

PLEASE ALSO REFER TO OUR "Gan Chip Handling Application Note" BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS!