
APN252 10–14 GHz GaN Driver Amplifier

X = 4.3 mm Y = 2.3 mm

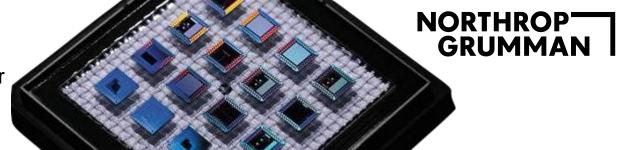
Applications

- Electronic Warfare
- Radar
- Test Equipment

Product Description

The APN252 monolithic GaN HEMT amplifier is a broadband, 2 Stage power device, designed for use in SATCOM Terminals and point-to-point digital radios. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods.

Product Features


- RF frequency: 10 to 14 GHz
- Linear Gain: 25.5 typ.*
- P1dB: 34 dBm typ.*
- Psat: 38 dBm typ.*
- PAE% @ Psat: 40% typ.*
- Die Size: 9.46 sq. mm
- 0.2 um GaN HEMT Process
- 4 mil SiC substrate
- DC Power: 24 VDC @ 480 mA

Export Information ECCN: 3A001.b.2.b.2 HTS (Schedule B) code: 8542.33.0000

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

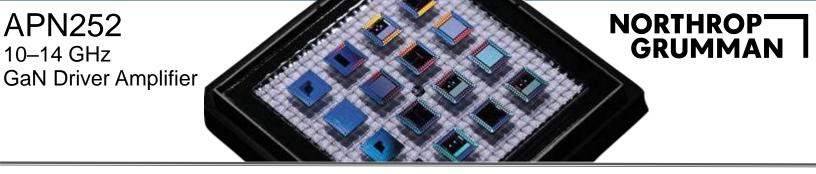
Web: http://www.yeswegan.com

APN252 10–14 GHz GaN Driver Amplifier

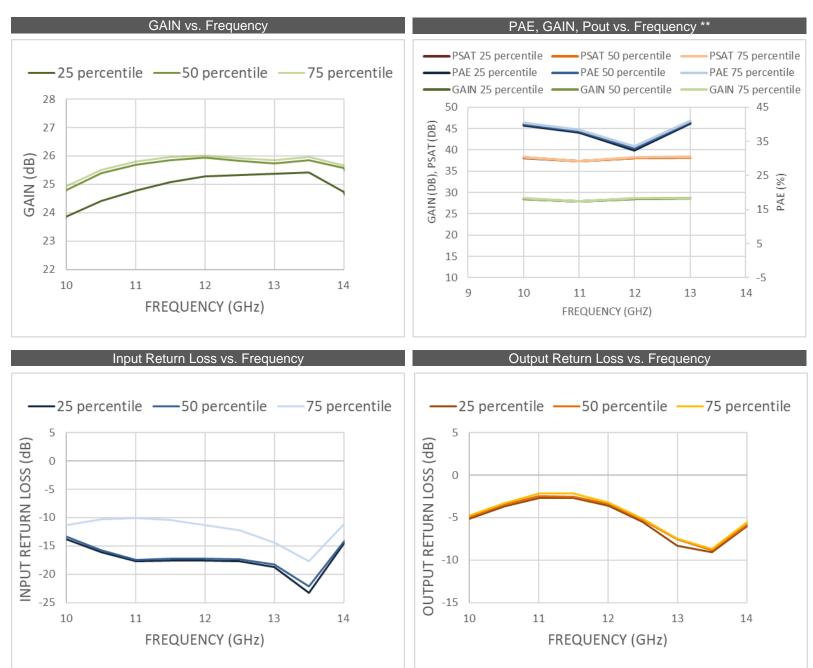
Absolute Maximum Ratings

Parameter	Value	Unit
Drain Voltage	28	V
Gate Voltage Range	-8 to 0	V
Drain Current	600	mA
Gate Current	0.24	mA
Soldering Temperature	320	°C

Recommended Operating Conditions

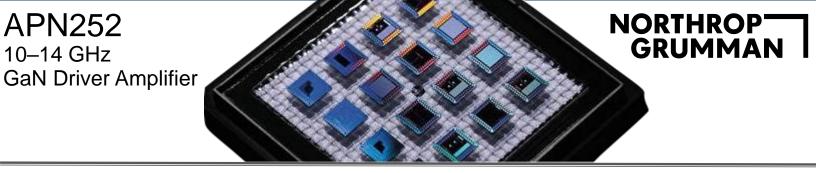

Parameter	Value	Unit
Drain Voltage Range	20 - 28	V
Gate Voltage Range	-5 to -3	V
Stg 1 Drain Current (Idq)	80	mA
Stg 2 Drain Current (Idq)	100 - 400	mA

Electrical Specifications

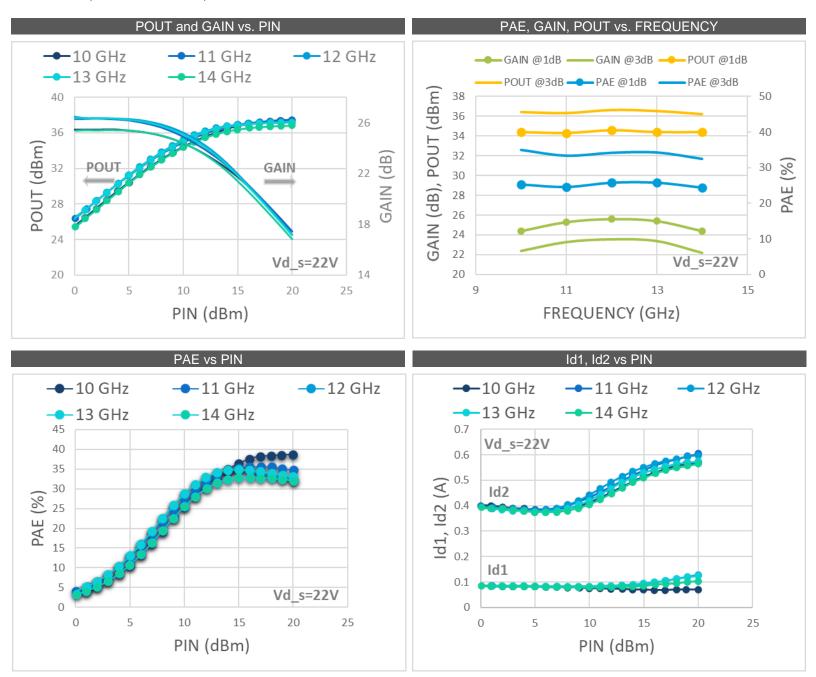

Parameter	Min	Тур	Max	Unit			
Operational Frequency	10		14	GHz			
Small Signal at 22V							
Small Signal Linear Gain	24	25	26	dB			
Input Return Loss	-23		-10	dB			
Output Return Loss	-9		-2	dB			
0	n-Wafer Pulsed	Power at 22V					
Psat (at 20 dBm)	37.3		38.4	dBm			
Power Gain (at 20 dBm)	17.3	18	18.4	dB			
P1db	34		36	dBm			
PAE (at 20 dBm)	32.4		40.6	%			
Max PAE	33.5		40.6	%			
Fixtured CW at 22V, 25°C Case Temp							
Psat (at 20 dBm)	36.8		37.5	dBm			
Power Gain (at 20 dBm)	25.4		26	dB			
PAE (at 20 dBm)	32		38	%			
Max PAE			38.6	%			
Drain Voltage		22		V			
Stage 1 Gate Voltage		-3.785		V			
Stage 2 Gate Voltage		-3.745		V			
Stage 1 Idq		80		mA			
Stage 2 Idq		400		mA			

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

Web: http://www.yeswegan.com

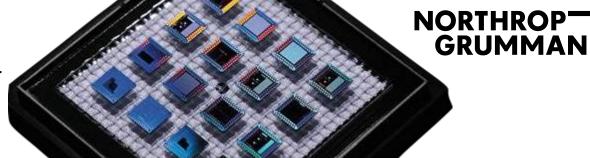


On wafer measured Performance Characteristics (Typical Performance at 25°C) Vd1 = Vd2 = 22 V, Id1 = 80 mA, Id2 = 400 mA

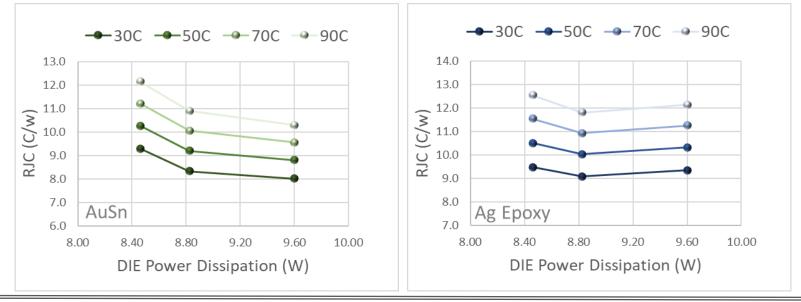


Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

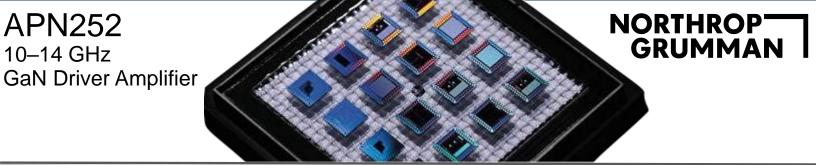
Web: http://www.yeswegan.com


Fixture measured Performance Characteristics (Typical Performance at 25°C) Vd = 22 V, Id1 = 80 mA, Id2 = 400 mA

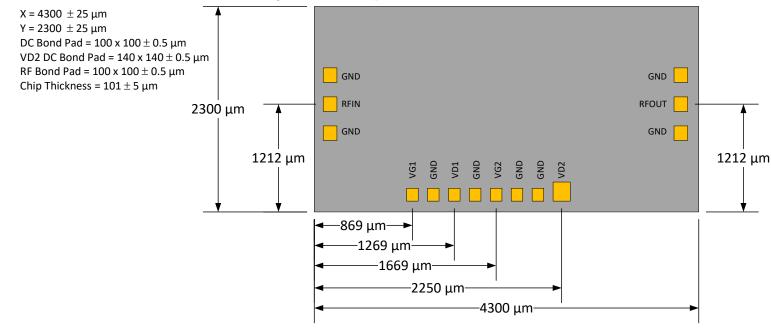
Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations


Web: http://www.yeswegan.com

APN252 10–14 GHz GaN Driver Amplifier


Preliminary Thermal Properties with die mounted with 25um 80/20 AuSn Eutectic to: 10mil Cu10W Shim.

Shim	Mounting Material	Average Backside Die Temperature	Hottest Junction Temperature Tjc	RF Output	Power Dissipation (W)	Thermal Resistance Rjc (°C/W)
		30 °C	109	34.9	8.5	9.3
			103	36.6	8.8	8.3
			107	37.3	9.6	8.0
		50 °C	137	34.9	8.5	10.3
			131	36.6	8.8	9.2
10 mil CuW	AuSn		134	37.3	9.6	8.8
	Eutectic	70 °C	165	34.9	8.5	11.2
			159	36.6	8.8	10.0
			162	37.3	9.6	9.5
		90 °C	193	34.9	8.5	12.1
			186	36.6	8.8	10.9
			189	37.3	9.6	10.3
10 mil CuW Ag		30 °C 50 °C	110	34.9	8.5	9.5
			110	36.6	8.8	9.1
			120	37.3	9.6	9.4
			139	34.9	8.5	10.5
			138	36.6	8.8	10.0
			149	37.3	9.6	10.3
	Ag Epoxy	70 °C	168	34.9	8.5	11.5
			166	36.6	8.8	10.9
			178	37.3	9.6	11.3
		90 °C	196	34.9	8.5	12.5
			194	36.6	8.8	11.8
			207	37.3	9.6	12.8



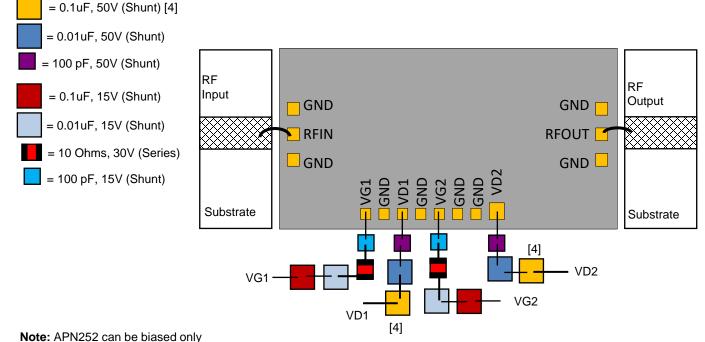
Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

Web: http://www.yeswegan.com

Die Size and Bond Pad Locations (Not to Scale)

Biasing/De-Biasing Details:

APN252 can be biased only from the bottom of the die.


Listed below are some guidelines for GaN device testing and wire bonding:

- a. Limit positive gate bias (G-S or G-D) to < 1V
- b. Know your devices' breakdown voltages
- c. Use a power supply with both voltage and current limit.
- d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture.
 - i. Apply negative gate voltage (-8 V) to ensure that all devices are off
 - ii. Ramp up drain bias to ~10 V
 - iii. Gradually increase gate bias voltage while monitoring drain current until 20% of the operating current is achieved
 - iv. Ramp up drain to operating bias
 - v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved
- e. Repeat bias procedure for each amplifier stage
- f. To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable):
 - i. Gradually decrease drain bias to 0 V.
 - ii. Gradually decrease gate bias to 0 V.
 - iii. Turn off supply voltages
- g. Repeat de-bias procedure for each amplifier stage

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

Web: http://www.yeswegan.com

APN252 10–14 GHz GaN Driver Amplifier Suggested Bonding Arrangement

from the bottom of the die.

Recommended Assembly Notes

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of <10 mil (long) by 3 by 0.5 mil ribbons on input and output.
- 3. Part must be biased from both sides if indicated.
- 4. The 0.1uF, 50V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do **NOT** use the 0.1uF, 50V Capacitors.

Mounting Processes

Most Northrop Grumman Aerospace Systems (NGAS) GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum

recommended temp during die attach is 320°C for 30 seconds.

Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool.

CAUTION: THE IMPROPER USE OF AuSn ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS.

PLEASE ALSO REFER TO OUR "GaN Chip Handling Application Note" BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS!

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to the U.S. Export Law as contained in the EAR regulations

Web: http://www.yeswegan.com