SDH148 80 – 100 GHz Switch

NORTHROP GRUMMAN

Product Datasheet

X=1400 μm Y=1400 μm

Features

- Frequency Band: 80-100 GHz
- SPDT Switch
- Insertion Loss (Average 80-100 GHz) :
 - 2.2 dB, typical
- Isolation:
 - > 35 dB, typical OFF state
 - > 35 dB, typical RFIN1 RFIN2
- Die Size: < 2.0 sq. mm</p>

Specification	Min	Тур	Max	Unit
Frequency	80		100	GHz
Insertion Loss (Ave.)		2.2	3	dB
Isolation				
Input - Output	28	35		dB
Input Return Loss				
'ON'		14		dB
'OFF'		22		dB
Output Return Loss		13		dB
RFIN1 - ON				
Vg1		0.3		V
Vg2		-3.3		V
RFIN2 - ON				
Vg1		-3.3		V
Vg2		0.3		V

Performance Characteristics (T_{op}= 25°C)

Applications

Revision: April 2015

 Wide Bandwidth Millimeter-wave Imaging RX Chains

- Sensors
- 🔶 Radar

Product Description

The SDH148 monolithic HEMT MMIC, a broadband, SPDT switch, is designed for use in Wide Bandwidth Millimeter-wave Imaging RX Chains and sensors. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Ti/Au, which is compatible with conventional die attach, thermocompression, and thermosonic wire bonding assembly techniques.

Absolute Maximum Ratings ($T_{OP} = 25^{\circ}C$)

Parameter	Min	Max	Unit
Vg1		0.5	V
Vg2		0.5	V
RF Input Power		TBD	dBm
Assembly		300	°C
Temperature			

Product Datasheet

Revision: April 2015

On-Wafer Measured Performance Characteristics (T_{OP} = 25°C)

Vg1 = 0.3V, Vg2 = -3.3V

Vg1 = -3.3V, Vg2 = -0.3V

SDH148 80 – 100 GHz Switch

NORTHROP GRUMMAN

Revision: April 2015

Product Datasheet

Die Size and Bond Pad Locations (Not to Scale)

X Dimension: $1400 \pm 25 \ \mu m$ Y Dimension: $1400 \pm 25 \ \mu m$ Bond Pad Dimensions: RF: $50 \times 50 \ \mu m \pm 0.5 \ \mu m$ * DC: $101 \times 101 \ \mu m \pm 0.5 \ \mu m$ * VG1 & VG2: $201 \times 101 \ \mu m \pm 0.5 \ \mu m$ Chip Thickness = $101 \pm 5 \ \mu m$

SDH148 80 – 100 GHz Switch

NORTHROP GRUMMAN

Product Datasheet

Suggested Bonding Arrangement

Revision: April 2015

Recommended Assembly Notes

1. Bypass caps should be 100 pF ceramic (single-layer) placed no further than 30 mils from the device.

2. Best performance obtained from use of <6 mil (long) by 1.5 by 0.5 mil ribbons on inputs and output.

3. VG1A and VG2A are optional gate bias /control pads and can be used in place of VG1 and/or VG2. Typical use would be NC.