

x=3.30mm; y=4.10 mm

Product Features

■ RF frequency: 27 to 31 GHz

■ Linear Gain: 20 dB typ.

■ Psat: 45.6 dBm typ.

■ Die Size: 13.52 sq. mm.

■ 0.2um GaN HEMT Process

4 mil SiC substrate

■ DC Power: 28 VDC @ 2.64 A

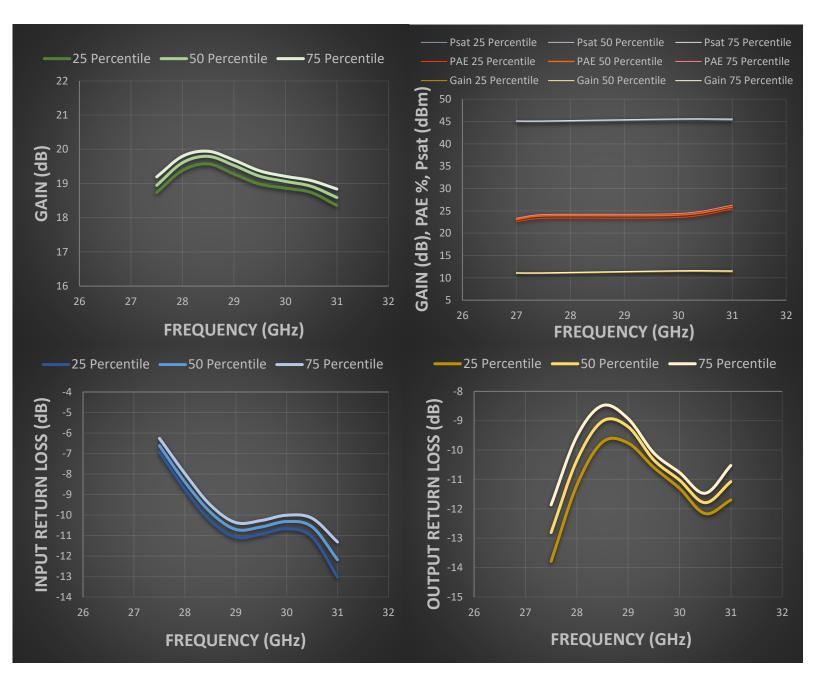
Applications

- Point-to-Point Digital Radios
- Point-to-Multipoint Digital Radios
- SatCom Terminals

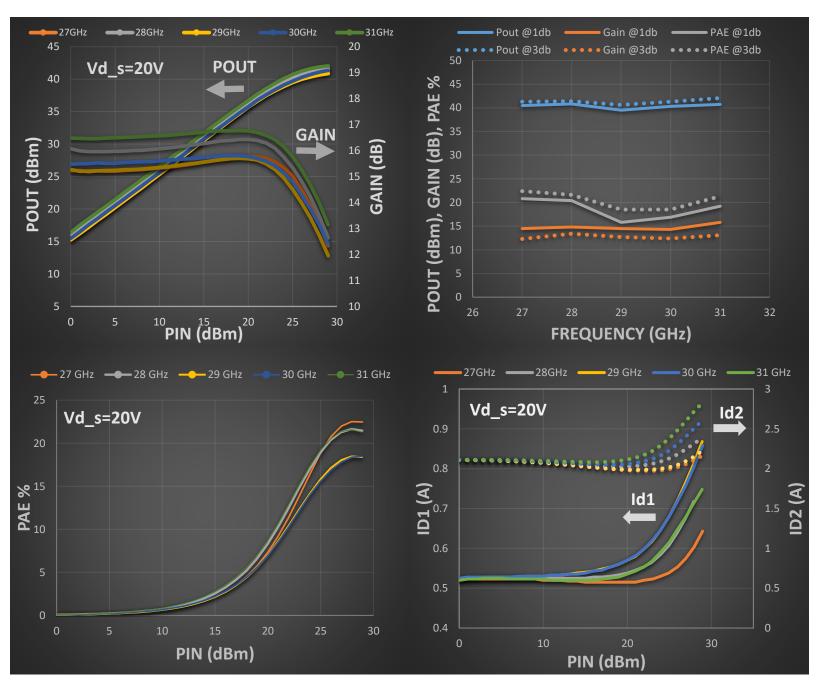
Product Description

The APN311 monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in Ka-Band communication applications such as SatCom Terminals and point-to-point and point-to-multipoint digital radios. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods.

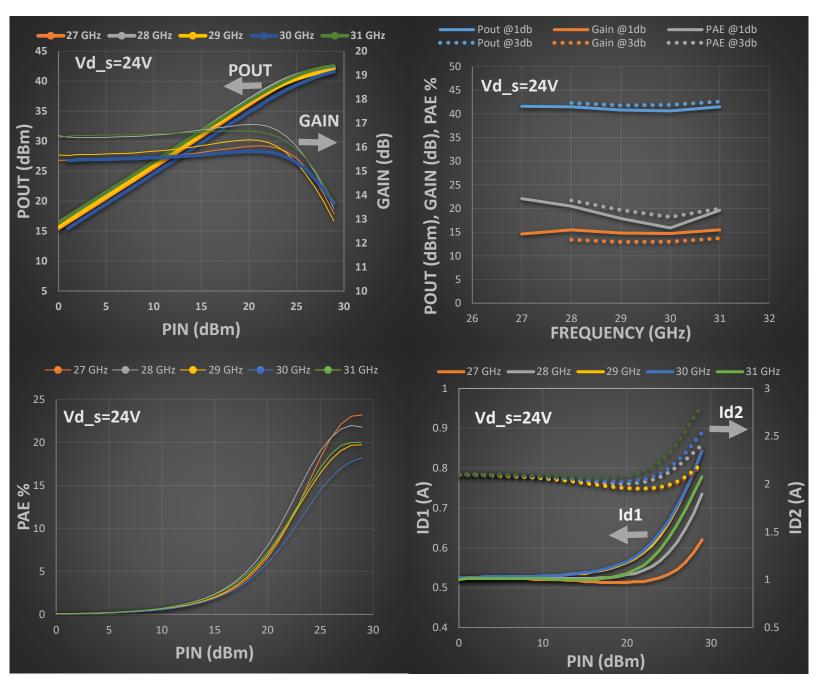
Performance Characteristics (Ta = 25°C)

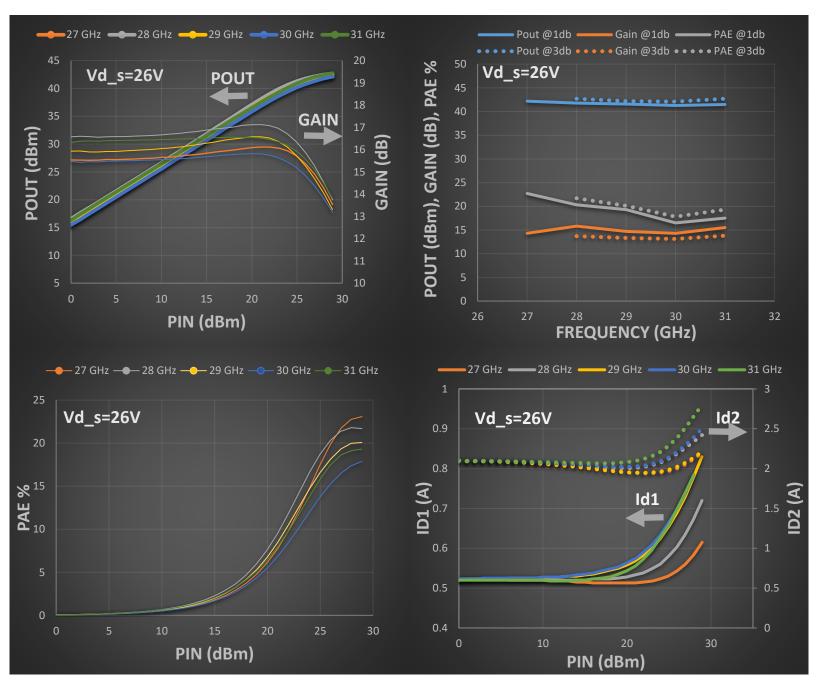

Specification *	Min	Тур	Max	Unit
Frequency	27		31	GHz
Linear Gain	19	20		dB
Input Return Loss	5	12		dB
Output Return Loss	>5	10		dB
P1db (PP*)		43		dBm
Psat (PP*)	44	45		dBm
PAE @ Psat (PP*)		30		%
Max PAE (PP*)	30			%
Vd1=Vg1a, Vd2=Vd2a	20		28	V
Vg1. Vg1a		-3.56		V
Vg2, Vg2a		-3.46		V
ld1+ld1a		830		mA
ld2+ld2a		1860		mA

HTS (Schedule B) code: 8542.33.0000

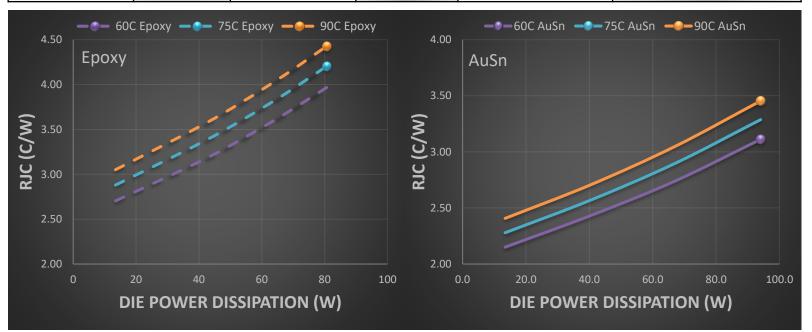

Export Information ECCN: **5A991.**g

^{*} Pulsed-Power On-Wafer unless otherwise noted


On Wafer Measured Performance Characteristics (Typical Performance at 25°C) Vd = 28.0 V, Id1 + Id1a = 830 mA, Id2 + Id2a = 1860 mA


Fixture Measured Performance Characteristics (Typical Performance at 25°C) Vd = 20.0 V, Id1 + Id1a = 830 mA, Id2 + Id2a = 1860 mA

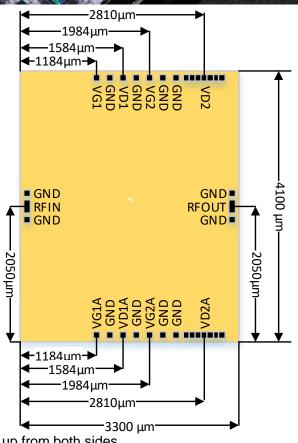
Fixture Measured Performance Characteristics (Typical Performance at 25°C) Vd = 24.0 V, Id1 + Id1a = 830 mA, Id2 + Id2a = 1860 mA


Fixture Measured Performance Characteristics (Typical Performance at 25°C) Vd = 26.0 V, Id1 + Id1a = 830 mA, Id2 + Id2a = 1860 mA

Thermal Properties

Preliminary Thermal Properties with die mounted with 30um 80/20 AuSn Eutectic* to: 25mil CuW85 Shim.

Shim	Mounting Material	Shim Boundary Temperature	Junction Temperature Tjc	Power Dissipation (W)	Thermal Resistance Rjc (°C/W)
25 mil CuW AuSn Eutecic		60 °C	89	13.4	2.15
			158	40.3	2.43
			244	67.2	2.74
			353	94.1	3.11
		75.00	106	13.4	2.28
	AuCa Futasia		179	40.3	2.57
	75 °C	270	67.2	2.90	
		384	94.1	3.29	
		90 °C	122	13.4	2.41
			199	40.3	2.71
			295	67.2	3.05
		415	94.1	3.45	
25 mil CuW 965 Epoxy		96	13.4	2.70	
		60 °C	187	40.3	3.14
			243	53.8	3.40
		307	67.2	3.67	
			114	13.4	2.88
	75 °C	210	40.3	3.35	
		269	53.8	3.61	
			336	67.2	3.89
		90 °C	131	13.4	3.05
			233	40.3	3.54
			295	53.8	3.81
			366	67.2	4.11

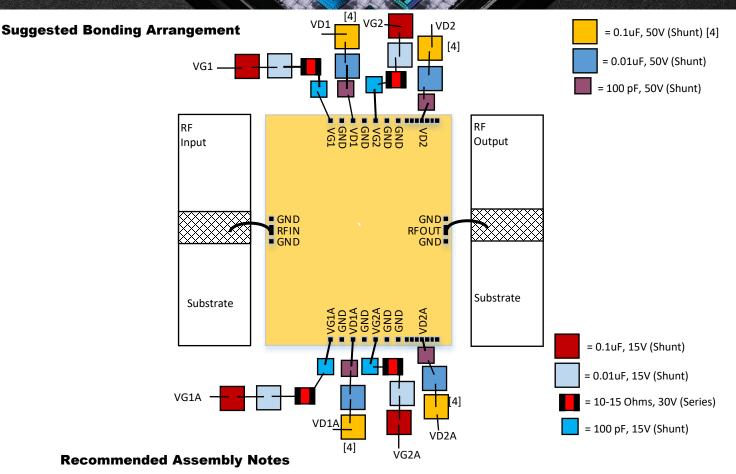

^{*} Assumed thermal conductivity of 57 W/m/K

^{**} Vd = 28.0 V, Idq1 = 830 mA, Id2q = 1860 mA

^{***} Max recommended. Pre-qualification reliability testing indicates that MTTF in excess of 10⁶ hours can be achieved by ensuring Tjc is kept below 200°C.

Die Size and Bond Pad Locations (Not to Scale)

 $X=3300~\mu m\pm 25~\mu m$ $Y=4100\pm 25~\mu m$ DC Bond Pad = 100 x 100 ± 0.5 μm RF Bond Pad = 100 x 100 ± 0.5 μm Chip Thickness = 101 ± 5 μm



Biasing/De-Biasing Details:

Bias for 1st stage is from top. The 2nd stages must bias up from both sides.

Listed below are some guidelines for GaN device testing and wire bonding:

- a. Limit positive gate bias (G-S or G-D) to < 1V
- b. Know your devices' breakdown voltages
- c. Use a power supply with both voltage and current limit.
- d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture.
 - i. Apply negative gate voltage (-8 V) to ensure that all devices are off
 - ii. Ramp up drain bias to ~10 V
 - iii. Gradually increase gate bias voltage while monitoring drain current until 20% of the operating current is achieved
 - iv. Ramp up drain to operating bias
 - v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved
- e. To safely de-bias GaN devices, start by de-biasing output amplifier stages first (if applicable):
 - . Set gate voltage back to pinch-off (-8V).
 - ii. Gradually decrease drain bias to 0 V.
 - iii. Gradually decrease gate bias to 0 V.
 - iv. Turn off supply voltages
- f. Repeat de-bias procedure for each amplifier stage

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of <10 mil (long) by 3 by 0.5 mil ribbons on input and output.
- 3. Part must be biased from both sides as indicated.
- 4. The 0.1uF, 50V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do **NOT** use the 0.1uF, 50V Capacitors.

Mounting Processes

Most NGSS GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGSS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 320°C for 30 seconds.

Note: Many of the NGSS parts do incorporate airbridges, so caution should be used when determining the pick up tool. **CAUTION**: THE IMPROPER USE OF AUSN ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS.

PLEASE ALSO REFER TO OUR "Gan Chip Handling Application Note" BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS!