Advantenna Datasheet

APN279
16-20.5 GHz
GaN Power Amplifier

X = 4490 um Y = 3730 um

Product Features

- RF Frequency: 16 to 20.5 GHz
- Linear gain: 19 dB, typical
- OP1dB: 36 dBm, typical
- Psat: 41.5dBm, typical
- PAE: >34% @ Psat
- DC Power: 20 Vdc at 712 mA
- Size: 4490 um x 3730 um
- Technology: 0.20 um GaN HEMT

Performance Characteristics (Ta = 25°C)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>16</td>
<td>19</td>
<td>20.5</td>
<td>GHz</td>
</tr>
<tr>
<td>Linear Gain</td>
<td>4</td>
<td>5</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>4</td>
<td>5</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1dB (Pulsed)*</td>
<td>38</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>P1dB (CW)**</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Psat (Pulsed)*</td>
<td>38</td>
<td>41.5</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Psat (CW)**</td>
<td>39.5</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>PAE @ Psat</td>
<td>30</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Vd1, Vd1a, Vd2, Vd2a</td>
<td>20</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Vg1, Vg1a, Vg2, Vg2a</td>
<td>-3.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Id1+ Id1a</td>
<td>200</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Id2+ Id2a</td>
<td>512</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Applications

- Point-to-Point Radio
- Multipoint Digital Radios
- Commercial SatCom

Product Description

The APN279 monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in Point-to-Point and Multipoint Digital Radios, Commercial SatCom. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods.

Absolute Maximum Ratings (Ta = 25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vd1, Vd1a, Vd2, Vd2a</td>
<td>20</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Id1+ Id1a</td>
<td>200</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Id2+ Id2a</td>
<td>512</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Vg1, Vg1a, Vg2, Vg2a</td>
<td>-5</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>Input drive level</td>
<td>TBD</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Assy. Temperature (TBD seconds)</td>
<td>300</td>
<td>deg. C</td>
<td></td>
</tr>
</tbody>
</table>
APN279
16-20.5 GHz
GaN Power Amplifier

Measured On-Wafer Performance Characteristics (Typical Performance at 25°C)
Vd1, Vd1a, Vd2, Vd2a = 20 V, Id1 + Id1a = 200mA, Id2 + Id2a = 512mA*

Linear Gain, Return Loss vs. Frequency

Power vs. Frequency

PAE vs. Frequency

Power Gain vs. Frequency

* Pulsed-Power On-Wafer

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to U.S. Export Law as contained in the Export Administration Regulations (EAR). Export out of the U.S. may require a U.S. Bureau of Industry and Security export license.
APN279
16-20.5 GHz
GaN Power Amplifier

Advance Datasheet
Revision: July 2017

Die Size and Bond Pad Locations (Not to Scale)

- X = 4490 ± 25 µm
- Y = 3730 ± 25 µm
- DC Bond Pad = 100 x 100 ± 0.5 µm
- RF Bond Pad = 100 x 100 ± 0.5 µm
- Chip Thickness = 101 ± 5 µm

Biasing/De-Biasing Details:
APN279 must be biased at the top and bottom of the die.

Listed below are some guidelines for GaN device testing and wire bonding:

a. Limit positive gate bias (G-S or G-D) to < 1V
b. Know your devices’ breakdown voltages
c. Use a power supply with both voltage and current limit.
d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture.
   i. Apply negative gate voltage (-5 V) to ensure that all devices are off
   ii. Ramp up drain bias to ~10 V
   iii. Gradually increase gate bias voltage while monitoring drain current until 20% of the operating current is achieved
   iv. Ramp up drain to operating bias
   v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved

e. To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable):
   i. Gradually decrease drain bias to 0 V.
   ii. Gradually decrease gate bias to 0 V.
   iii. Turn off supply voltages

f. Repeat de-bias procedure for each amplifier stage

Preliminary Information: The data contained in this document describes new products in the sampling or preproduction phase of development and is for information only. Northrop Grumman reserves the right to change without notice the characteristic data and other specifications as they apply to this product. The product represented by this datasheet is subject to U.S. Export Law as contained in the Export Administration Regulations (EAR). Export out of the U.S. may require a U.S. Bureau of Industry and Security export license.

Web: http://www.as.northropgrumman.com/mps
©2017 Northrop Grumman Systems Corporation
Phone: (310) 814-5000 • Fax: (310) 812-7011 • E-mail: as-mps.sales@ngc.com
Approved for Public Release: Northrop Grumman Case 17-1503, 07/31
Recommended Assembly Notes

1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
2. Best performance obtained from use of <10 mil (long) by 3 by 0.5 mil ribbons on input and output.
3. Part must be biased from both sides as indicated.
4. The 0.1uF, 50V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do NOT use the 0.1uF, 50V Capacitors.

Mounting Processes

Most Northrop Grumman Aerospace Systems (NGAS) GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 320°C for 30 seconds.

Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool.

CAUTION: THE IMPROPER USE OF AuSn ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS.

PLEASE ALSO REFER TO OUR “GaN Chip Handling Application Note” BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS!