SDH148
80 – 100 GHz
Switch

Features

♦ Frequency Band: 80-100 GHz
♦ SPDT Switch
♦ Insertion Loss (Average 80-100 GHz):
 ➢ 2.2 dB, typical
♦ Isolation:
 ➢ 35 dB, typical OFF state
 ➢ 35 dB, typical RFIN1 - RFIN2
♦ Die Size: < 2.0 sq. mm

Performance Characteristics \((T_{\text{OP}} = 25^\circ \text{C}) \)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>80</td>
<td>2.2</td>
<td>100</td>
<td>GHz</td>
</tr>
<tr>
<td>Insertion Loss (Ave.)</td>
<td></td>
<td>2.2</td>
<td>3</td>
<td>dB</td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
<td>28</td>
<td>35</td>
<td>dB</td>
</tr>
<tr>
<td>Input - Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Return Loss 'ON'</td>
<td></td>
<td>14</td>
<td>14</td>
<td>dB</td>
</tr>
<tr>
<td>'OFF'</td>
<td></td>
<td>22</td>
<td>22</td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td></td>
<td>13</td>
<td>13</td>
<td>dB</td>
</tr>
<tr>
<td>RFIN1 - ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vg1</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Vg2</td>
<td>-3.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>RFIN2 - ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vg1</td>
<td>-3.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Vg2</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Applications

♦ Wide Bandwidth Millimeter-wave Imaging RX Chains
♦ Sensors
♦ Radar

Product Description

The SDH148 monolithic HEMT MMIC, a broadband, SPDT switch, is designed for use in Wide Bandwidth Millimeter-wave Imaging RX Chains and sensors. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Ti/Au, which is compatible with conventional die attach, thermocompression, and thermosonic wire bonding assembly techniques.
On-Wafer Measured Performance Characteristics ($T_{OP} = 25^\circ C$)

‘ON’ Insertion Loss vs. Frequency

Vg1 = 0.3V, Vg2 = -3.3V

‘OFF’ Insertion Loss vs. Frequency

Vg1 = -3.3V, Vg2 = -0.3V

Input Return Loss vs. Frequency

‘ON’ Output Return Loss vs. Frequency

Note: The data contained in this document is for information only. Northrop Grumman reserves the right to change without notice the specifications, designs, prices or conditions of sale, as they apply to this product. The product represented by this datasheet is subject to U.S. Export Law as contained in the Export Administration Regulations (EAR).
Die Size and Bond Pad Locations (Not to Scale)

- X Dimension: 1400 ± 25 µm
- Y Dimension: 1400 ± 25 µm

Bond Pad Dimensions:
- RF: 50 x 50 µm ± 0.5 µm
- * DC: 101 x 101 µm ± 0.5 µm
- * VG1 & VG2: 201 x 101 µm ± 0.5 µm

Chip Thickness = 101 ± 5 µm

Die and Bond Pad Locations (Not to Scale)

- Gnd
- RFIN1
- RFOUT
- VG1
- VG1A
- VG2
- VG2A

Note: The data contained in this document is for information only. Northrop Grumman reserves the right to change without notice the specifications, designs, prices or conditions of sale, as they apply to this product. The product represented by this datasheet is subject to U.S. Export Law as contained in the Export Administration Regulations (EAR).
Recommended Assembly Notes

1. Bypass caps should be 100 pF ceramic (single-layer) placed no further than 30 mils from the device.
2. Best performance obtained from use of <6 mil (long) by 1.5 by 0.5 mil ribbons on inputs and output.
3. VG1A and VG2A are optional gate bias /control pads and can be used in place of VG1 and/or VG2. Typical use would be NC.