Highly Linear and Compact MMW Phased Array Transmitters

November 11, 2003

R. Lai, M. Siddiqui, B. Pitman, M. Nishimoto, K. Johnson, S. Din, O. Fordham, G. Schreyer, R. Grundbacher, L. Callejo and D. Streit,
Northrop Grumman Space Technology, Redondo Beach, CA 90278
Critical Technology that will Enable Next Generation Satcom Phased Arrays

- Next generation phased array designs will be driven by desire for increased capacity
- Evolution to smaller beam widths and more simultaneous beams favors phased arrays
 - ~100 simultaneous beams from one aperture
 - Today’s typical communication links use complex modulation requiring greater than 26 to 30 dB C/N for BER of 10^{-6} to 10^{-9}
- Critical phased array technologies will be:
- High efficiency and linearity SSPA’s
 - Maintain high C/I with many beams
 - $P_{1\text{dB}}$ is not a good measure of linearity for multi-carrier modulation
 - Two tone OIM$_3$ /OIP$_3$ is an approximation for multi-carrier schemes
 - Noise to Power Ratio (NPR) for intra channel signal distortion
 - Adjacent Channel Power Ratio (ACPR) for adjacent channel interference
- Compact multiple-beam beam formers
 - Earth coverage, ~1000 beams
 - Need to reduce die size and cost
Background

Noise Power Ratio Explained

Adjacent Channel Power Ratio Explained
Selected linearity tests were performed at different frequencies dependent on test equipment availability.

A sampling of measurements at frequencies from 20 GHz to 46 GHz are presented.

All 1 watt amplifiers have similar topologies:

- Show similar $P_{1\text{dB}}$, P_{sat}, and OIP_3 behavior.
- ACPR and NPR behavior should be similar.
- Behavior over temperature is similar.
NGST 0.15µm GaAs PHEMT

- Flight qualified profile (die thickness: 100 µm; 50 µm.)
- $F_T \sim 75$ to 80 GHz @ $V_{DS} = 5V$
- $I_{max} \geq 600$ mA/mm
- $V_{BD} > 9$ V @ 0.1 mA/mm, > 11V @ 1 mA/mm
- $G_m > 550$ to 600 mS/mm
- $OIP_3 \geq P_{1dB} + 9$dB or better @ 10dB OBO
 - $OIP_3 \geq P_{1dB} + 9$dB holds at 5dB OBO
- $P_{1dB} \sim 400$ to 500 mW/mm; $P_{sat} \sim 500$ to 650 mW/mm
20 GHz Driver Amplifier

- Freq: 20 GHz
- Gain: 20 dB
- P_{1dB}: 25 dBm (329 mW/mm, 30% PAE)
- P_{sat}: 26 dBm (414 mW/mm, > 42% PAE)
- OIP$_3$: 35 dBm ($IM_3 = -46dB_c$ @10dB OBO)
- AM/PM \leq 5 degrees under drive
- NPR calculated $> 18dB_c$ @ 4.5 OBO
 - Using single tone AM/PM, P_{in}/P_{out} and current vs. drive characteristics.
- PAE at NPR $> 18dB_c$ \sim 21%
- Size: 2.5 mm2

State-of-the-art NPR for multi beam operation
24-26 GHz Power Amplifier

- **Freq:** 24 to 26 GHz
- **Gain:** 18 dB
- **P_{1dB}**: 31 dBm (525 mW/mm, 22% PAE)
- **P_{sat}**: 32 dBm (660 mW/mm, 29% PAE)
- **OIP_{3}**: 40.5 dBm (IM_{3} = -45 dB_{c} @ 10 dB OBO)
- **Size:** 5.88 mm²

- Amplifier topology chosen for maximum linear performance. PAE was a secondary consideration.

At \(P_{out} = (P_{1dB} - 2 \text{ dB}) \),

\[IM_{3} = -25 \text{ dB}_{c} ! \]
ACPR Test Bench

- Freq: 26 GHz
- WCDMA (25MHz BW) up converted to pass band.
- ACPR > –44dBc @ 5 MHz offset
- Raw test data (no corrections for test set)
- Performance is expected to repeat for power amplifiers up to 45 GHz processed in NGST’s 0.15um 4mil GaAs.

Excellent linearity (ACPR) @ $P_{out}=P_{1dB} – 9dB$
37-40 GHz Power Amplifier

- **Freq:** 37 to 40 GHz
- **Gain:** 15 dB
- **P_{1dB}:** 30 dBm (463 mW/mm, 18% PAE)
- **P_{sat}:** 31 dBm (583 mW/mm, 20% PAE)
- **OIP$_3$:** 41 dBm (IM$_3$ = -40 dBc @ 6dB OBO)
- **OIP$_3$** degrades 2 dB at 85 degrees C.
 - OIP$_3$ very well behaved over temperature.
- **Size:** 4.5 mm2
- **Temperature performance** typical of all NGST linear power amplifiers.

$IM_3 = -36$ dBc @ 85 degrees C with 6dB OBO!
40-44 GHz Power Amplifier

- Freq: 40 to 44 GHz
- Gain: 12 dB
- P_{1dB}: 29 dBm (368 mW/mm, 14% PAE)
- P_{sat}: 30 dBm (463 mW/mm, 18% PAE)
- OIP$_3$: 39 dBm (IM$_3$ = -42 dBc @ 8 dB OBO)
- Size: 4.25 mm2

$OIP_3 = P_{1dB} + 10 \text{dB with gain of only } 6 \text{dB per stage!}$
43-47 GHz Phased Array Transmit Amplifier

- Freq: 43 to 47 GHz
- Gain: 22 dB
- Biased for power:
 - $P_{1dB} = 24$ dBm (465 mW/mm), PAE > 22%
 - $P_{sat} = 24.7$ dBm (546 mW/mm), PAE > 24%
- Biased for efficiency:
 - $P_{1dB} = 23$ dBm (370 mW/mm), PAE > 30%
 - $P_{sat} = 23.8$ dBm (450 mW/mm), PAE > 35%
- Size: 3.17 mm2

State-of-the-art P_{1dB} and PAE from 0.15um, 4mil GaAs process
Figure of Merit Comparison Table

<table>
<thead>
<tr>
<th>Foundry</th>
<th>Year</th>
<th>Freq.</th>
<th>Stages</th>
<th>Chip Size</th>
<th>Output</th>
<th>S.S. Gain</th>
<th>PAE</th>
<th>Psat</th>
<th>Psat density</th>
<th>OIP3</th>
<th>OIP3:P1dB</th>
<th>P1dB density</th>
<th>OIP3 density</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGST</td>
<td>2003</td>
<td>19-21</td>
<td>2</td>
<td>2.5</td>
<td>0.8</td>
<td>18.5</td>
<td>24.0</td>
<td>30.0</td>
<td>25.9</td>
<td>486</td>
<td>35</td>
<td>11</td>
<td>314</td>
</tr>
<tr>
<td>Transcom</td>
<td>2002</td>
<td>14-17</td>
<td>4</td>
<td>4.1</td>
<td>3.6</td>
<td>30</td>
<td>30.8</td>
<td>24.5</td>
<td>31.3</td>
<td>375</td>
<td>333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triquint</td>
<td>2000</td>
<td>18-26</td>
<td>2</td>
<td>3.9</td>
<td>2.4</td>
<td>15</td>
<td>31.0</td>
<td>25.0</td>
<td>32</td>
<td>660</td>
<td>38.5</td>
<td>7.5</td>
<td>525</td>
</tr>
<tr>
<td>NGST</td>
<td>2003</td>
<td>24-27</td>
<td>2</td>
<td>5.9</td>
<td>2.4</td>
<td>19.5</td>
<td>30.9</td>
<td>24.0</td>
<td>31.6</td>
<td>602</td>
<td>40.5</td>
<td>9.6</td>
<td>513</td>
</tr>
<tr>
<td>NGST</td>
<td>2002</td>
<td>21-26</td>
<td>2</td>
<td>5.9</td>
<td>2.4</td>
<td>19.5</td>
<td>30.9</td>
<td>24.0</td>
<td>31</td>
<td>525</td>
<td>40.5</td>
<td>9.6</td>
<td>513</td>
</tr>
<tr>
<td>NGST</td>
<td>2003</td>
<td>30</td>
<td>1</td>
<td>1.9</td>
<td>2.4</td>
<td>10</td>
<td>31.0</td>
<td>25.7</td>
<td>32</td>
<td>660</td>
<td>40.5</td>
<td>10</td>
<td>525</td>
</tr>
<tr>
<td>UMS</td>
<td>2002</td>
<td>29</td>
<td>2</td>
<td>2.3</td>
<td>2.4</td>
<td>18.5</td>
<td>29.5</td>
<td>30.1</td>
<td>426.4</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triquint</td>
<td>2002</td>
<td>30</td>
<td>4</td>
<td>12.9</td>
<td>22.5</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>Triquint</td>
<td>2000</td>
<td>28-31</td>
<td>2</td>
<td>3.7</td>
<td>2.4</td>
<td>16</td>
<td>29.5</td>
<td>20.0</td>
<td>30.2</td>
<td>436.3</td>
<td>37</td>
<td>7.5</td>
<td>525</td>
</tr>
<tr>
<td>BAE</td>
<td>1999</td>
<td>29-33</td>
<td>2</td>
<td>14.9</td>
<td>10.8</td>
<td>18</td>
<td>34.8</td>
<td>20.0</td>
<td>36.5</td>
<td>413.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGST</td>
<td>2003</td>
<td>37-40</td>
<td>2</td>
<td>4.5</td>
<td>2.16</td>
<td>15</td>
<td>30.0</td>
<td>18.0</td>
<td>31</td>
<td>583</td>
<td>41</td>
<td>11</td>
<td>463</td>
</tr>
<tr>
<td>NGST</td>
<td>2003</td>
<td>40-44</td>
<td>2</td>
<td>4.3</td>
<td>2.16</td>
<td>15</td>
<td>29.0</td>
<td>12.0</td>
<td>30.5</td>
<td>519</td>
<td>39</td>
<td>10</td>
<td>368</td>
</tr>
<tr>
<td>NGST</td>
<td>2003</td>
<td>43-47</td>
<td>3</td>
<td>3.2</td>
<td>0.54</td>
<td>22</td>
<td>24.0</td>
<td>35.0</td>
<td>24.8</td>
<td>559</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Demonstrated state of the art $P_{1\text{dB}}$, P_{sat}, Power Density and OIP_3 in compact die size.

- Meets high linearity requirements of phased array / radar transmitters.

 - High gain per stage enables excellent linearity, PAE and compact die size through 46 GHz.

 - Designs use NGST’s flight qualified 0.15µm GaAs PHEMT technology.

 - NGST space qualified 0.15µm PHEMT with its proven track record of volume production and use in automated assembly will support high chip counts in large arrays.

- Next phase in design will reduce area by 50% while maintaining performance.