Northrop Grumman has been advancing propulsion technology since 1958. Our earliest work involved cold gas, heated gas, and liquid bipropellant and monopropellant rockets and boosters; we continue to further these technologies today. For example, Northrop Grumman was selected in May 2001 by NASA to be one of the developers of new propulsion technology for potential use on next-generation launch and space transportation vehicles.
We have been developing electric propulsion since the 1970s and have made recent world-class advances in gel propellant propulsion.
Our fundamental research and development has been applied to a range of flight hardware for a wide range of space missions. Recent flight successes of propulsion systems have included NASA's Chandra X-ray Observatory, the Army's gel-powered FMTI missile, and a SCAT-powered spacecraft.
Booster Vehicle Engines
Northrop Grumman is developing booster vehicle engines that will provide low-cost access to space.
Based on Northrop Grumman's pintle engine technology, Northrop Grumman's 650,000-pound thrust TR-106 engine is one of the largest liquid rockets ever built. It has been successfully test fired at 100 percent of its rated thrust as well as at 65 percent throttle condition in tests at NASA's John C. Stennis Space Center.
Designed as a simple, easy-to-manufacture, low cost engine, the TR-106 has parts made from common steel alloys using standard industrial fabrication techniques, uses ablative cooling techniques in place of more expensive regenerative cooling, and features the least complex type of rocket propellant injector a single element coaxial pintle injector. The pintle injector contains only five parts (excluding seals, attachment nuts, bolts and washers).
Electric Propulsion
Northrop Grumman has been developing selected electric propulsion technologies and systems since the 1970s. A Northrop Grumman-developed arcjet system, launched in 1999, is the highest power (30kW) electric propulsion system flown to date. The company is now developing a 200 W Hall propulsion system to support a demonstration of formation-flying three satellites.
Electric propulsion can be used for multiple types of in-space missions, from inserting spacecraft into specific orbits to repositioning spacecraft, stationkeeping, and constellation management. Electric thrusters have much higher specific impulse than chemical thrusters, and provide two to three times more fuel efficiency. Higher fuel efficiency means less propellant is needed on-board, allowing spacecraft designers to reduce overall spacecraft weight and launch costs or to add more weight and capability to the payload.